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Abstract The 
ux/transmission power spectrum has become a popular statistical
tool in studies of the high redshift (z > 2) Lyman-alpha forest. At low
redshifts, where the forest has thinned out into a series of well-isolated
absorption lines, the motivation for 
ux statistics is less obvious. Here,
we study the relative merits of 
ux versus line correlations, and derive
a simple condition under which one is favored over the other on purely
statistical grounds. Systematic errors probably play an important role
in this discussion, and they are outlined as well.

1. Introduction

Weinberg (this volume) has given a superb review of advances in our
understanding of the high redshift Lyman-alpha forest and its connection
to the cosmic web (Bond, Kofman & Pogosyan 1996). Much recent work
has focused on the the 
ux/transmission power spectrum, an approach
pioneered by Croft et al. (1998) (see also Hui 1999). There are several
di�erent de�nitions in the literature. The one we adopt here is:
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where �f is the two-point 
ux correlation (�v speci�es the lag in veloc-
ity), and Pf is its Fourier-transform, the 
ux power spectrum. Here f
is simply the transmission f = e�� where � is the Lyman-alpha optical
depth. The symbol �f denotes the mean transmission. Finally, k is the
wave-number in units of inverse velocity.
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The 
ux-statistics above, which treats the transmission 
uctuations
on a pixel-by-pixel basis, is motivated by a physical picture in which the
forest arises from continuous 
uctuations in the intergalactic medium,
rather than discrete, well-isolated clouds (Bi, Boerner & Chu 1992, Cen
et al. 1994; for additional ref., see Hui et al. 1997 and ref. therein). A
second class of statistics, which has a longer history, treats the transmis-
sion 
uctuations on a line-by-line basis. The counting of absorption lines
in terms of their properties, such as the column density distribution, falls
into this category. The analog of the 
ux two-point correlation, or power
spectrum, is the line correlation or power spectrum, de�ned as:
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where n(v) is the number density of lines, and �n is its mean. Implicit
in this de�nition is that one studies the correlation of absorption lines
within some range of column density or equivalent width, or above some
threshold.
The respective motivations for line and 
ux statistics are probably

both valid, depending on circumstances. For the low column density
forest which probably arises from smooth 
uctuations, 
ux statistics
seems reasonable. For the higher column density systems, which likely
arise from well-isolated galactic or pre-galactic halos, line statistics seems
to provide a good characterization. The aim of this short note is to

ask a purely statistical question, irrespective of the underlying

physical picture: which kind of statistics can one measure with

more precision?

2. Statistical Error Analysis for the Flux vs.
Line Power Spectrum

The statistical error can be worked out for both the two-point corre-
lation function and the power spectrum. The result is somewhat simpler
to state in Fourier space, and so we will focus on the power spectrum.
The Fourier space description has the additional advantage that the
powers in separate wave-bands are uncorrelated, provided that the 
uc-
tuations are Gaussian random. The latter is a crucial assumption in our
discussion below { the 
uctuations in 
ux or number density of lines
are almost certainly not exactly Gaussian random. However, because
correlations seen in the forest are often quite weak, Gaussianity is not a
bad approximation; at least, it provides us a way to gauge the relative
importance of shot-noise and the correlation signal, as we will see. By
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the central limit theorem, lower resolution data also tend to be more
Gaussian random.
The statistical dispersion in the measured 
ux power spectrum is given

by:

hÆPf(k)2i1=2 = 1p
Nk

(Pf(k) +N�1

f ) (3)

where Nk is the number of Fourier modes in the waveband of interest
(which is centered at k) i.e. if the waveband has a width of �k, Nk =
�k=(2�=L) where L is the length of the quasar absorption spectrum (if
one has more than one line of sight, one adds the error in quadrature in
the usual way).
The quantity Nf (not to be confused with Nk) gives us a measure of

the signal-to-noise of the data: the smaller Nf is, the larger the shot-
noise. To be precise,

N�1
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N
X
i
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�NQ(i)
2
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�f
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where dv is the velocity width of each pixel, N is the number of pixels,
var(i) is the variance of counts in pixel i, and �NQ(i) is the mean quasar
photon count in pixel i (e.g. for a 
at continuum, �NQ would be inde-
pendent of i). A useful approximation (accurate to within a factor of
two or so) to the shot-noise Nf

�1 is given by (dv= �f)(N=S)2 where �f is
the mean transmission as before, and N=S is the average noise-to-signal
ratio at the level of the continuum.
Eq. (3) is derived in Hui, Burles et al. (2001). Its intuitive meaning

is quite apparent if one writes down the fractional error:

hÆPf (k)2i1=2
Pf (k)

=
1p
Nk

(1 + [NfPf(k)]
�1) (5)

One can see that 1. the longer the spectrum is, the larger the number of
modes Nk, and therefore the smaller the fractional error; 2. the larger
the intrinsic signal (i.e. Pf (k)), the smaller the fractional error; 3. the
more noisy the spectrum is, the larger Nf

�1 is, and therefore the larger
the error.
How about the statistical error for the line power spectrum?

The expression is very similar. The fractional error for the line power
spectrum is:

hÆPn(k)2i1=2
Pn(k)

=
1p
Nk

(1 + [�nPn(k)]
�1) (6)
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where Pn is the line power spectrum, Nk is the same number of modes
in the waveband centered at k, and �n is the number density of lines.
The intuitive meaning of this expression is also quite clear: the smaller
the number density of lines, the larger the fractional error. The only
di�erence between eq. (5) and (6) is that Nf

�1 has been replaced by
�n�1. In other words, shot-noise from photon-counts is replaced by shot-
noise from the �nite number of absorption lines.
Before we draw conclusions from these two expressions, we should note

that our results for the statistical error assume the quadratic estimator
for the respective power spectrum is of a particular form (known in the
large scale structure literature as (DD � 2DR + RR)=RR; Landy &
Szalay 1993); other forms generally lead to larger errors. We refer the
reader to the discussion in Hui et al. (2001) for details. The discussion
there focused on the 
ux statistics, but very similar reasoning applies to
line statistics as well.

3. Discussion

Eq. (5) and (6) in the last section give the respective fractional error in

ux power spectrum and line power spectrum. From the two expressions,
it is plain to see that the 
ux power spectrum can be measured with a
higher statistical precision than the line power spectrum if

Nf > �nPn=Pf (7)

where Nf � (S=N)2 �f=dv (eq. [4]) is roughly the typical signal-to-noise-
squared per km/s of the quasar spectrum, �n is the number density of
lines, Pn is the line power spectrum, and Pf is the 
ux power spectrum.
At z � 3, all quantities on the right hand side have been measured,

so we can derive the condition on the S=N above which the 
ux power
spectrum can be measured with greater precision. The result depends
of course on the scale of interest. Let us pick a typical scale of around
k � 0:01 s/km (or velocity separation of about 300 km/s). At this scale,
Pn=Pf is about 100, depending on the column density of the absorption
lines (a lower column density cut of � 1014 cm�2; including more low
column density lines would decrease this ratio) (see Cristiani et al. 1997
and McDonald et al. 2000), while �n � 2 � 10�3( km=s)�1 (Kim et al.
2002). Finally, �f � 0:65. Hence, the requirement for favoring 
ux over
line power spectrum is:

(S=N)2=dv �> 0:3( km=s)�1 (8)

One can see that this is not a very stringent requirement on the signal-
to-noise at all. For high quality Keck spectra, signal-to-noise of several
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tens per resolution element (dv � 10 km/s) is quite typical, and so
(S=N)2=dv � 0:3( km=s)�1. For noisy, low-resolution spectra such as
those obtained from the Sloan Digital Sky Survey, (S=N)2=dv � 10�2�1,
it looks as though the line power spectrum might be favored, but one
must keep in mind that for low-resolution data, both �n and Pn are much
reduced, and the requirement on (S=N)2=dv can be relaxed by as much
as a factor of 100.
The situation at lower redshifts z < 2 is more uncertain. This is be-

cause no measurements have been made of the 
ux power spectrum at
low redshifts, although much is known abut the absorption-line number
density and clustering (e.g. Weymann et al. 1998, Impey 1999, Penton
et al. 2000, Dave & Tripp 2001, Chen et al. 2001, Bechtold et al. 2002).
Both �n and Pf drop as one goes to lower redshifts, although Pn tends
to increase (this statement is cut-o� dependent; we assume here a �xed
column-density or equivalent-width threshold). One possibility is to as-
sume that �nPn=Pf stays roughly constant, in which case eq. (8) remains
a valid requirement on the signal-to-noise of the data. Instruments on-
board HST frequently yield spectra that satisfy this requirement. It
must be emphasized, however, Pf has yet to be measured at low red-
shifts, and, if measured, one must go back to the expression in eq. (7)
to draw the appropriate conclusion.
To end our discussion, it is important to underscore the fact that our

discussions so far focus entirely on the issue of statistical error. Sys-
tematic errors could make a signi�cant di�erence to the conclusion one
draws, as emphasized by several members of the audience. Two sources
of systematic errors were brought up. One is that the eÆciency of the
spectrograph or detector might not be suÆciently well-characterized to
allow an accurate 
ux correlation measurement. However, if the eÆ-
ciency has small-scale 
uctuations that are not well-understood, neither
should one trust the absorption-line measurements. Second, spurious
power introduced by the continuum might be more of an issue for the

ux correlation than for the line correlation. This is certainly a poten-
tial worry. One should keep in mind, however, that continuum-�tting
is in fact easier at low redshifts than at high redshifts, because of the
thinning out of the forest (although continuum-�tting is actually not rec-
ommended as part of the data reduction; see Hui et al. 2001). The im-
portant question is: what is the scale below which the forest 
uctuation
dominates over the continuum 
uctuation (recall that the continuum is
smooth while the forest has lots of small scale structure)? At z � 3,
this scale is about k � 0:001 s/km (or velocity separation of about a few
thousand km/s). As one goes to lower redshifts, the forest 
ux power
Pf drops, and so this scale must move to a smaller value (or higher k).
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The issue is whether this scale is still suÆciently large to be interesting.
At the very least, the author hopes that this short note will provide a
stimulus to measure the 
ux power spectrum from low redshift quasar
spectra. Measurements from actual data are certainly far more useful
than speculations from a theorist.
Thanks are due to the organizers of the IGM conference, especially

Mary Putnam and Jessica Rosenberg, for gently and patiently urging the
author to write up his talk, and to Todd Tripp for useful discussions. The
interest expressed by Chris Impey in the issues discussed here has also
provided an important motivation. This short paper covers the second
half of the conference presentation. For the �rst half on the galaxy-IGM
connection at z � 3, see Hui & Sheth (2002, in preparation); for related
observational results, see Adelberger et al. (2002). Support for this work
is provided by an Outstanding Junior Investigator Award from the DOE,
an AST-0098437 grant from the NSF, and by the DOE at Fermilab, and
NASA grant NAG5-10842.
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